
LA-UR-19-30136
Approved for public release; distribution is unlimited.

Title: Simplified Interface to Complex Memory (SICM) FY19 Project Review

Author(s): Lang, Michael Kenneth

Intended for: project review

Issued: 2019-10-07

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Business Sensitive Information

Simplified Interface to Complex Memory
(SICM) FY19 Project Review

September 2019 ECP ST Project Review
ECP Project FY20 WBS 2.3.1.16)

PI: Michael Lang (Los Alamos National Laboratory)

Date: Sept 27 2019

*(NNSA/ATDM funded)

2

Simplified Interface to Complex Memory (SICM) Overview

Allocate
Deallocate

Migrate
Arbitrate

&
Introspect
Memory

in a
portable
manner

3

Simplified Interface to Complex Memory (SICM) Overview

Allocate
Deallocate

Migrate
Arbitrate

&
Introspect
Memory

in a
portable
manner

LANL – low-level interface
Terry Jones ORNL & Michael Jantz UTK a high-level interface via active profiling for data placement
Maya Gokhale LLNL higher-level Graph App interface
Ada Gavriloska GaTech a high-level interface, app characterization, ML approach
Frank Mueller NC State a high-level interface using static analysis in the LLVM layer
Si Hammond simulation of hierarchies in SST

4

Overall approach & preparation for exascale platforms.

• Describe your overall approach followed by specific activities in preparation for exascale platforms.
– Provide abstraction for Heterogenous memory for runtimes and applications

• focusing on arenas for data structures that are used together

• Trying for inclusion in existing open source projects rather than starting a new one (CLANG, OpenMP, hwloc, Umpire, Jemalloc …)

– Pre-exascale environments you are using.
• Sierra/Summit nodes P9+Volta,

• Intel CascadeLake + Optane,

• Intel KNL with MCDRAM,

• Intel w/ GPU, AMD w/ GPU -- Builds in the Aurora environment. (last week)

– Only supporting unified memory architectures

5

Overall approach & preparation for exascale platforms.

• Describe your overall approach followed by specific activities in preparation for exascale platforms.
– Include status and any results from pre-exascale environments (GPU porting, use of Summit) that illustrate your strategy.

• Kripkie evaluation with Umpire and SICM on KNL, Sierra

• Memsys paper on performance of apps/miniapps with SICM/Optane. VPIC showed approximately equal performance DRAM to Optane.

– Include discussion of your major performance challenges.
• Slow move pages on Linux kernel – (collaboration with RIKEN), working on FY20

6

Status of integration efforts

• Describe your overall approach and describe the status of your client integration efforts.
– Include a description of your overall strategy for your L4 project.

• OpenMP/CLANG/LLVM, Pull request is being updated to latest version.

• Umpire, Pull request is there. Need to coordinate with Beckensale.

• Hwloc -- need to push back the memory identification for numa nodes back to maintainer

– Include specific client interactions that illustrate your strategy.
• Umpire and OpenMP, previously Global Arrays (they have integrated our low-level allocator)

– Include recent integration progress.
• Umpire and OpenMP/CLANG

– Include discussion of your major integration challenges.
• Just being included in the runtime isn’t enough to impact applications. Applications have to use the heterogenous memory in a way that

increases performance. Project needs to help a few apps make use of heterogenous memory and help reason about the tradeoffs. The
work in the high-level interface will inform this and is also an opportunity for an application or two to try the semi-automated interface.

7

PMR projects only: Specific questions to address

• Perlmutter, Aurora and Frontier represent very different node programming environments. As
appropriate, how is your project addressing this challenge, including node performance,
performance portability, performance of MPI+X and preparation for further heterogeneity?
– Support of heterogenous memory as a discoverable NUMA node seems like a low bar for vendors to

support.
– Performance is more hand-tuned if the low-level interface is used. The high level-interface is working on

automatically identifying data objects to move to higher performance memories.

• What is the path for your capabilities to realize sustainability in the software ecosystem?
– Pull requests to existing opensource projects. At most have to maintain a thin wrapper for SICM.

• Hwloc for memory discovery
• Jemalloc for some sicm allocation features
• Umpire for a higher level interface
• OpenMP/CLANG/LLVM code generation

8

PMR projects only: Specific questions to address

• How is your work impacting vendor capabilities?
– Aurora: Talking to Jeff Hammond, on strategies for Aurora.
– Perlmutter: probably will not work do to lack of unified memory on the accelerators
– Frontier: Need more detailed hardware information – Signed up for staff for a programming workshop and

will rely on Terry and the ORNL folks.

9

SICM low-level: Umpire + SICM Integration

• HOST and CUDA allocators implementations replaced with SICM calls
– Devices are selected automatically

• Custom SICM operations for copy, move, memset, and realloc
– SICM move actually moves instead of allocating new memory and copying the data

• SICM Strategy allows for explicit device selection

• Enable with CMake flags

• Benchmarks with LLNL/Kripke
– Better than Umpire-only
– Worse than Umpire+CUDA

10

Overall approach & preparation for exascale platforms.

11

Scope and objectives
• Testing of 3dxpoint which is expected on A21
• Rework of build system to use Cmake and Space and

Travis for continuous integration.
• To get experience on A21 hardware and to realign build

system with ECP common practices.

Project accomplishment
• Availability of 3Dxpoint lifted the priority of this milestone.

Impact
• Experience with 3dxpoint will allow support by SICM

library.
• Rework of build system will allow easier integration into

ECP SDK. Cmake and Spack.

Cool image
Intel 3Dxpoint allows Non-
Volatile memory to be
mapped into traditional
DRAM space allowing much
high memory capacity for
applications but at a lower
performance.

SICM low-level: SICM initial investigation of
Intel’s 3DXpoint & update of SICM build system

ECP WBS 2.3.1.16 SICM
PI Michael Lang, LANL

Members LLNL, ORNL, SNL

12

SICM low-level: Added SICM support for Intel Optane

• Gained Experience with Intel’s Optane DC PMM which is on Aurora.

• Used kernel modification to use Optane in unsupported way
– Can also use a kernel parameter.

• Memsys 2019 - Performance characterization of a DRAM-NVM hybrid memory architecture for
HPC applications using Intel Optane DC Persistent Memory Modules
– Ran many different HPC applications using Optane
– Compared runs in Memory Mode and Hybrid Mode

• HPDC - Using Non-Volatile Memory in High Performance Computing to Shrink the Size of
Clusters
– Showed that the size of Optane allows for applications running on a single node to have comparable

performance to multimode runs

13

Optane Performance Evaluation

•HPC Applications and mini-apps
– AMG, LULESH, VPIC and SNAP
– Comparing DRAM-only (Flat mode), Optane-only (Flat mode) and Memory

mode
– Small to medium problem size
– Strong and Weak scaling using MPI

• Execution time & bandwidth
• Execution time & Energy
• L3 cache miss ratio & Cycles/Instructions

– Used LIKWID to collect the statistics

14

SICM low-level: Heterogenous Memory Identification

NUMA Node Characterization

• Small C program

• Runs a few kernels to get timings for different access patterns

• Clusters results by NUMA node
– K-Means

• Assigns type according to characteristics of cluster

• Takes 1-30 seconds (slower on Optane), depending on memory types being benchmarked

15

SICM low-level: Generate SICM call from OpenMP Pragmas

Patches to Clang to turn OpenMP memory spaces in OpenMP 5.x into sicm library calls in the
LLVM/OpenMP runtime.

Supports Compile SICM runtime with CLANG/LLVM

At init time it does DLOpen to find SICM library, if found it it uses SICM to satisfy the

pragma openmp allocate

OpenMP memory types: omp_ (default, large_cap, const, high_bw, low_lat) _mem_spaces

Currently supports KNL, Optane, testing Sierra

Same codepath that supports memkind library, refactored to support multiple custom memory
allocators – more general than SICM support.

16

SICM High-level: Portable Application Guidance for Complex Memory
Systems (MemSys ‘19)

Application Guided Data Tiering in SICM Evaluation

Performance with Different Upper Tier Capacities

• Extended SICM high-level interface with application-directed data
tiering based on the MemBrain approach (Olson et al., 2018)

• Experiments on two real heterogeneous memory platforms:
• KNL with 16 GB of high-bandwidth MCDRAM, 96 GB of DDR
• CLX with 192 GB of DDR, 512 GB of non-volatile AEP

• Workloads from CORAL benchmark suite
• LULESH, SNAP, AMG, and QMCPACK
• Tested multiple inputs of each ranging from SMALL (requires only a few GB of

data and only a few minutes of run time) to LARGE or HUGE (requires almost
all memory capacity and several hours of run time)

• Comparison configurations
• First touch: unguided software-based tiering
• Cache mode: hardware manages upper tier as a large memory-side cache

• Guided approach is more
effective than unguided first
touch regardless of the
upper tier capacity

• Benefits are more
pronounced for
configurations with more
upper tier capacity

• Guidance is more important
on CLX due to limited
bandwidth of lower tier

Application
source code

Annotated
executable

Memory usage
statistics

Program
input

Program
execution

Compile
with site

annotations

MemBrain
runtime

Annotated
executable

Architectural
profiling Site → tier

guidance

Bin-packing /
sorting

heuristics

Hybrid memory hardware

Program
input

Program
execution

MemBrain
runtime

Annotated
executable

Guided data
placement

Hybrid memory hardware

Memory
usage

statistics

Site → tier
guidance

(a) (b) (c) (d)

Performance with Different Program Inputs
• Profiles of small program

inputs are often effective
for guiding execution with
larger inputs

• Guided execution in SICM
outperforms default first
touch and cache mode by
up to 22x and 7.8x,
respectively

0.25

0.5

1

2

4

8

16

32

MED LG HG MED LG HG MED LG HG MED LG HG

LULESH AMG SNAP QMCPACK

Fo
M

 re
la

tiv
e

to
 fi

rs
t t

ou
ch

cache mode
small-guided
medium-guided
large-guided
huge-guided

CLX Performance

17

SICM high-level: Evaluating the Effectiveness of Program Data Features
for Guiding Memory Management (MemSys ‘19)

Program Data Features for Guiding Memory Mgmt Case Study: Guided Data Tiering

Full Program Simulations of Object Usage Behavior

• SICM may employ program profiling and analysis to direct data
management across complex memory hierarchy

• Naïve strategies for collecting and using memory management
guidance are ineffective due to large number of addresses and
accesses generated by most applications

• Potential solution: associate profiles of memory usage with program
data features (e.g., object sizes, types, allocation instructions, etc.)

• Problem: which data features are most effective for guiding
complex memory management?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ba
nd

w
id

th

Capacity

ideal
application
size
size bucket
type sig

Performance with same profile and evaluation input

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ba
nd

w
id

th

Capacity

ideal

alloc phase

phase sig

access sig

Performance with same profile and evaluation runsPerformance with same profile and evaluation input

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ba
nd

w
id

th

Capacity

ideal
site alone
site + c1
site + c2
site + c4
site + c8

Performance with same profile and evaluation input

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ba
nd

w
id

th

Capacity

ideal
type + size
phase + size
phase + site
phase + size + site

Performance with same profile and evaluation input

• Modeled impact of using different data features to steer hot program data into
capacity-constrained device tier

• For each feature category, classify objects associated with different features
into different feature sets

• Plots show cumulative bandwidth and capacity of data associated with hottest
feature sets from left to right

• Conclusions
• Even simple program features (e.g., object size) are often effective when

profiled and guided execution use same input.
• Allocation sites are still effective when profiled and guided execution use

different inputs

• Simulated memory usage
of individual data objects,
including capacity,
bandwidth, cache
utilization, and lifetime

• Associated and
aggregated usage
information for each
allocated object with
program data features

Feature Distinguishes objects …

application in the same application

size allocated with exactly the same size

size bucket allocated with similar, but not
necessarily identical sizes

type with the same data type

allocation phase allocated during the same phase

phase signature alive during the same set of phases

access signature accessed by the same set of instructions

allocation site allocated from the same instruction

allocation context Allocated from the same calling context

18

SICM LLNL task: Metall, Meta Allocator for persistent memory
Overview

• Enable applications to allocate data including custom C++ data structures in persistent memory (PM)

• Provides rich C++ API developed by Boost libraries to increase usability

• Works on both conventional block-storage and emerging byte-addressable PMs for portability

• Incorporates state-of-the-art allocation algorithms to scale to exascale

• Provides space-efficient ("diff" based) persistent memory snapshotting (versioning) capabilities to handle exascale data

Potential use cases
class my_class {int n;}

{
metall::manager mgr(metall::create_only, "/ssd");
auto pdata = mgr.construct<my_class>("data")();
pdata->n = 10;

}

// -- Exit the program and reattach the data -- //

{
metall::manager mgr(metall::open_only, "/ssd");
auto pdata = mgr.find<my_class>("data").first;
pdata->n += 20; // Can update data

}

Example: allocating a custom data structure with Metall

.

.

.
App ...

Snapshots/versioning
Persistent in-memory

data store

Producer & consumer
(exchange data over file system)

App1 App2

App

Backing file(s)

Allocator

AppDRAM

PM

19

Metall : Meta allocator for persistent memory

• Graph construction (write intensive) benchmark (primary evaluation for collaboration with EXAGRAPH)

• Conventional
PCIe NVMe SSD

• Varied data structures

0

10

20

30

27 28 29 30 31
#vertices (log2)

• Client integration progress
– Metall runs on commodity Linux systems and requires only Boost libraries

• XFS, ZFS, or Btrfs filesystem is necessary for space-efficient snapshotting
– Potential collaboration

– EXAGRAPH Collaborating to store graph data as well as other intermediate data into PM leveraging Metall.
– EXAALT Investigating a collaboration opportunity. Passed an initial unit test to store its management data.

0

5

10

15

20

26 27 28 29 30
#vertices (log2)
Be
tt
er

In
se
rt
ed
 E
dg
es
/s
 (m
illi
on
)

• Intel Optane DC
Persistent Memory

• Varied memory modes

Metall enables applications to process exascale data
in a variety of conditions (PM technologies and custom data structures)

with straightforward modifications

Be
tt
er

In
se
rt
ed
 E
dg
es
/s
 (m
illi
on
)

To be installed in Aurora

